Synaptic vesicle pool size, release probability and synaptic depression are sensitive to Ca2+ buffering capacity in the developing rat calyx of Held.

نویسندگان

  • R M Leão
  • H von Gersdorff
چکیده

The calyx of Held, a specialized synaptic terminal in the medial nucleus of the trapezoid body, undergoes a series of changes during postnatal development that prepares this synapse for reliable high frequency firing. These changes reduce short-term synaptic depression during tetanic stimulation and thereby prevent action potential failures during a stimulus train. We measured presynaptic membrane capacitance changes in calyces from young postnatal day 5-7 (p5-7) or older (p10-12) rat pups to examine the effect of calcium buffer capacity on vesicle pool size and the efficiency of exocytosis. Vesicle pool size was sensitive to the choice and concentration of exogenous Ca2+ buffer, and this sensitivity was much stronger in younger animals. Pool size and exocytosis efficiency in p5-7 calyces were depressed by 0.2 mM EGTA to a greater extent than with 0.05 mM BAPTA, even though BAPTA is a 100-fold faster Ca2+ buffer. However, this was not the case for p10-12 calyces. With 5 mM EGTA, exocytosis efficiency was reduced to a much larger extent in young calyces compared to older calyces. Depression of exocytosis using pairs of 10-ms depolarizations was reduced by 0.2 mM EGTA compared to 0.05 mM BAPTA to a similar extent in both age groups. These results indicate a developmentally regulated heterogeneity in the sensitivity of different vesicle pools to Ca2+ buffer capacity. We propose that, during development, a population of vesicles that are tightly coupled to Ca2+ channels expands at the expense of vesicles more distant from Ca2+ channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment.

The timing and strength of synaptic transmission is profoundly dependent on temperature. However, the temperature dependence of the multiple mechanisms that contribute to short-term synaptic plasticity is poorly understood. Here, we use voltage-clamp recordings to quantify the temperature dependence of exocytosis at the calyx of Held synapse. EPSC and miniature EPSC amplitudes were larger at ph...

متن کامل

Presynaptic plasticity at two giant auditory synapses in normal and deaf mice.

Large calyceal synapses are often regarded as simple relay points, built for high-fidelity and high-frequency synaptic transmission and a minimal requirement for synaptic plasticity, but this view is oversimplified. Calyceal synapses can exhibit surprising activity-dependent developmental plasticity. Here we compare basal synaptic transmission and activity-dependent plasticity at two stereotypi...

متن کامل

Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway.

Synapsins are abundant synaptic-vesicle phosphoproteins that are known to regulate neurotransmitter release but whose precise function has been difficult to pinpoint. Here, we use knockout mice to analyze the role of synapsins 1 and 2 in the calyx of Held synapse, allowing precise measurements of neurotransmitter release. We find that deletion of synapsins did not induce significant changes in ...

متن کامل

Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse.

Recruitment of release-ready vesicles at synapses is one of the important factors, which determine dynamic properties of signaling between neurons in the brain. It has been shown that the rate of vesicle recruitment is accelerated by strong synaptic activity. An elevated concentration of calcium ions in the presynaptic terminal ([Ca2+]i) has been proposed to be responsible for this effect. Howe...

متن کامل

Vesicle pools and short-term synaptic depression: lessons from a large synapse.

Depletion of a pool of readily releasable vesicles during repetitive presynaptic activity is a candidate mechanism for the induction of short-term synaptic depression. The large, calyx-type synaptic terminals in the brainstem auditory pathway, and especially the calyx of Held, offer unique possibilities for studying the cellular mechanisms leading to synaptic depression. Recent work at these sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2009